« Vrati se
Neka su M i N sjecišta simetrala kutova \angle ABC i \angle ACB sa stranicama trokuta \overline{AC} i \overline{AB} trokuta ABC. Polupravac MN siječe trokutu opisanu kružnicu u točki D. Dokažite da je
 \frac{1}{|BD|} = \frac{1}{|AD|}+ \frac{1}{|CD|} .

Slični zadaci

Kroz zadanu točku P na nekoj stranici trokuta ABC konsturiraj pravac koji će trokut podijeliti na dva dijela jednake površine.
Let ABC be a triangle for which there exists an interior point F such that \angle AFB=\angle BFC=\angle CFA. Let the lines BF and CF meet the sides AC and AB at D and E respectively. Prove that

AB+AC\geq4DE.
Let A_1 be the center of the square inscribed in acute triangle ABC with two vertices of the square on side BC. Thus one of the two remaining vertices of the square is on side AB and the other is on AC. Points B_1,\ C_1 are defined in a similar way for inscribed squares with two vertices on sides AC and AB, respectively. Prove that lines AA_1,\ BB_1,\ CC_1 are concurrent.
Let ABC be a triangle and M be an interior point. Prove that

\min\{MA,MB,MC\}+MA+MB+MC<AB+AC+BC.
Let M and N be two points inside triangle ABC such that
\angle MAB = \angle NAC\quad \mbox{and}\quad \angle MBA = \angle NBC.
Prove that
\frac {AM \cdot AN}{AB \cdot AC} + \frac {BM \cdot BN}{BA \cdot BC} + \frac {CM \cdot CN}{CA \cdot CB} = 1.
Let ABCD be a cyclic quadrilateral. Let E and F be variable points on the sides AB and CD, respectively, such that AE:EB=CF:FD. Let P be the point on the segment EF such that PE:PF=AB:CD. Prove that the ratio between the areas of triangles APD and BPC does not depend on the choice of E and F.