« Vrati se
Neka je F_n=x^n \sin nA + y^n \sin nB + z^n \sin nC, gdje su x, y, z, A, B, C realni brojevi takvi da je A+B+C=\pi. Ako je F_1=F_2=0, dokažite da je F_n=0 za svaki prirodni broj n.

Slični zadaci

Suppose that a, b, c > 0 such that abc = 1. Prove that \frac{ab}{ab + a^5 + b^5} + \frac{bc}{bc + b^5 + c^5} + \frac{ca}{ca + c^5 + a^5} \leq 1.
Let a_{1}, a_{2}...a_{n} be non-negative reals, not all zero. Show that that
(a) The polynomial p(x) = x^{n} - a_{1}x^{n - 1} + ... - a_{n - 1}x - a_{n} has preceisely 1 positive real root R.
(b) let A = \sum_{i = 1}^n a_{i} and B = \sum_{i = 1}^n ia_{i}. Show that A^{A} \leq R^{B}.
Let a_1,a_2,\ldots be an infinite sequence of real numbers, for which there exists a real number c with 0\leq a_i\leq c for all i, such that

\left|\,a_i-a_j\,\right|\geq{1\over i+j}{\rm \forall}i,j \quad \textnormal{with} \quad i\ne j.

Prove that c\geq1.
Let a_0, a_1, a_2, ... be an infinite sequence of real numbers satisfying the equation a_n=\left|a_{n+1}-a_{n+2}\right| for all n\geq 0, where a_0 and a_1 are two different positive reals.

Can this sequence a_0, a_1, a_2, ... be bounded?

Remark This one is from the IMO Shortlist 2004, but it's already published on the official BWM website und thus I take the freedom to post it here:
a_{0},\ a_{1},\ a_{2},\dots is a sequence of real numbers such that
a_{n + 1} = \left[a_{n}\right]\cdot \left\{a_{n}\right\}
prove that exist j such that for every i\geq j we have a_{i + 2} = a_{i}.
Let a_{0}, a_{1}, a_{2}, ... be a sequence of reals such that a_{0} = - 1 and

a_{n} + \frac {a_{n - 1}}{2} + \frac {a_{n - 2}}{3} + ... + \frac {a_{1}}{n} + \frac {a_{0}}{n + 1} = 0 for all n\geq 1.

Show that a_{n} > 0 for all n\geq 1.