« Vrati se
U trokutu \triangle ABC nalazi se točka P. Iz točke P spuštene su ortogonalne projekcije na stranice trokuta. Nožišta projekcija na AB, BC, AC, označimo s D,E,F respektivno. Ako su četverokuti ADPF,DBEP i CEPF tangencijalni, dokaži da je P središte trokutu \triangle ABC upisane kružnice.

Slični zadaci

Given n \ (n \geq 3) points in space such that every three of them form a triangle with one angle greater than or equal to 120^\circ, prove that these points can be denoted by A_1,A_2, \ldots,A_n in such a way that for each i, j, k, 1 \leq i < j < k \leq n, angle A_iA_jA_k is greater than or equal to 120^\circ .
Given k parallel lines l_1, \ldots, l_k and n_i points on the line l_i, i = 1, 2, \ldots, k, find the maximum possible number of triangles with vertices at these points.
(BEL 5) Let G be the centroid of the triangle OAB.
(a) Prove that all conics passing through the points O,A,B,G are hyperbolas.
(b) Find the locus of the centers of these hyperbolas.
(BUL 4) Let M be the point inside the right-angled triangle ABC (\angle C = 90^{\circ}) such that \angle MAB = \angle MBC = \angle MCA =\phi. Let \Psi be the acute angle between the medians of AC and BC. Prove that \frac{\sin(\phi+\Psi)}{\sin(\phi-\Psi)}= 5.
Given triangle ABC with points M and N are in the sides AB and AC respectively.
If \dfrac{BM}{MA} +\dfrac{CN}{NA} = 1 , then prove that the centroid of ABC lies on MN .
(SWE 1) Six points P_1, . . . , P_6 are given in 3-dimensional space such that no four of them lie in the same plane. Each of the line segments P_jP_k is colored black or white. Prove that there exists one triangle P_jP_kP_l whose edges are of the same color.