« Vrati se
Let a,b,c,d be positive real numbers with a+b+c+d=4.
Prove that
a^{2}bc+b^{2}cd+c^{2}da+d^{2}ab\leq 4.

Slični zadaci

Let n \geq 2, n \in \mathbb{N} and let p, a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \mathbb{R} satisfying \frac{1}{2} \leq p \leq 1, 0 \leq a_i, 0 \leq b_i \leq p, i = 1, \ldots, n, and \sum^n_{i=1} a_i = \sum^n_{i=1} b_i. Prove the inequality: \sum^n_{i=1} b_i \prod^n_{j = 1, j \neq i} a_j \leq \frac{p}{(n-1)^{n-1}}.
Let a,b,c,d be real numbers which satisfy \frac{1}{2}\leq a,b,c,d\leq 2 and abcd=1. Find the maximum value of \left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{d}\right)\left(d+\frac{1}{a}\right)\text{.}
Let x, y, z be real numbers satisfying x^2+y^2+z^2+9=4(x+y+z). Prove that x^4+y^4+z^4+16(x^2+y^2+z^2) \ge 8(x^3+y^3+z^3)+27 and determine when equality holds.
For each integer n\geqslant2, determine the largest real constant C_n such that for all positive real numbers a_1, \ldots, a_n we have \frac{a_1^2+\ldots+a_n^2}{n}\geqslant\left(\frac{a_1+\ldots+a_n}{n}\right)^2+C_n\cdot(a_1-a_n)^2\mbox{.}
Let a, b, c be positive real numbers such that \frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}=2\text{.}
Prove that \frac{\sqrt a + \sqrt b+\sqrt c}{2} \geq \frac{1}{\sqrt a}+\frac{1}{\sqrt b}+\frac{1}{\sqrt c}\text{.}
Neka su a, b i c pozitivni realni brojevi takvi da je ab + bc + ca = 1. Pokažite da vrijedi
\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a} \geqslant \sqrt 3 + \frac{ab}{a+b} + \frac{bc}{b+c} + \frac{ca}{c+a}