« Vrati se
Initially, only the integer 44 is written on a board. An integer a on the board can be re- placed with four pairwise different integers a_1, a_2, a_3, a_4 such that the arithmetic mean \frac 14 (a_1 + a_2 + a_3 + a_4) of the four new integers is equal to the number a. In a step we simultaneously replace all the integers on the board in the above way. After 30 steps we end up with n = 4^{30} integers b_1, b2,\ldots, b_n on the board. Prove that \frac{b_1^2 + b_2^2+b_3^2+\cdots+b_n^2}{n}\geq 2011.

Slični zadaci

Consider the two square matrices
A=\begin{bmatrix}+1 &+1 &+1&+1 &+1\\+1 &+1 &+1&-1 &-1\\ +1 &-1&-1 &+1&+1\\ +1 &-1 &-1 &-1 &+1\\ +1 &+1&-1 &+1&-1\end{bmatrix}\quad\text{ and }\quad B=\begin{bmatrix}+1 &+1 &+1&+1 &+1\\+1 &+1 &+1&-1 &-1\\ +1 &+1&-1&+1&-1\\ +1 &-1&-1&+1&+1\\ +1 &-1&+1&-1 &+1\end{bmatrix}

with entries +1 and -1. The following operations will be called elementary:

(1) Changing signs of all numbers in one row;
(2) Changing signs of all numbers in one column;
(3) Interchanging two rows (two rows exchange their positions);
(4) Interchanging two columns.

Prove that the matrix B cannot be obtained from the matrix A using these operations.
Neka je M podskup skupa \{1, 2, ..., 15\} koji ne sadrži 3 elementa čiji je umnožak potpun kvadrat. Odredi maksimalan broj elemenata skupa M.
On a blackboard there are n \geq 2, n \in \mathbb{Z}^{+} numbers. In each step we select two numbers from the blackboard and replace both of them by their sum. Determine all numbers n for which it is possible to yield n identical number after a finite number of steps.
Let a, b, c be real numbers such that for every two of the equations x^2+ax+b=0, \quad x^2+bx+c=0, \quad x^2+cx+a=0 there is exactly one real number satisfying both of them. Determine all possible values of a^2+b^2+c^2.
For an integer n \geq 3, let \mathcal M be the set \{(x, y) | x, y \in \mathbb Z, 1 \leq  x \leq  n, 1 \leq  y \leq  n\} of points in the plane.

What is the maximum possible number of points in a subset S \subseteq \mathcal M which does not contain three distinct points being the vertices of a right triangle?
Skup S sastoji se od 14 prirodnih brojeva. Pokažite da postoji k\in\{1, \ldots, 7\} za koji je moguće naci k-člane disjunktne podskupove \{a_1, \ldots, a_k\} i \{b_1, \ldots, b_k\} skupa S tako da se sume
 A = \frac{1}{a_1} + \cdots + \frac{1}{a_k}, \quad  B = \frac{1}{b_1} + \cdots + \frac{1}{b_k} razlikuju za manje od 0.001.