Junior Balkan MO 2000 - Problem 3
Dodao/la:
arhiva27. listopada 2023. A half-circle of diameter $\overline{EF}$ is placed on the side $\overline{BC}$ of a triangle $ABC$ and it is tangent to the sides $\overline{AB}$ and $\overline{AC}$ in the points $Q$ and $P$ respectively. Prove that the intersection point $K$ between the lines $EP$ and $FQ$ lies on the altitude from $A$ of the triangle $ABC$.
Izvor: Juniorska balkanska matematička olimpijada 2000.