Junior Balkan MO 2001 - Problem 2


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 4,0
Dodao/la: arhiva
27. listopada 2023.
LaTeX PDF

Let ABC be a triangle with \angle C = 90^\circ and |CA| \ne |CB|. Let \overline{CH} be an altitude and \overline{CL} be an interior angle bisector. Show that for X \ne C on the line \overline{CL}, we have \angle XAC \ne \angle XBC. Also show that for Y \ne C on the line \overline{CH} we have \angle YAC \ne \angle YBC.

Izvor: Juniorska balkanska matematička olimpijada 2001.