Junior Balkan MO 2001 - Problem 3
Dodao/la:
arhiva27. listopada 2023. Let $ABC$ be an equilateral triangle and $D,E$ on the sides $\overline{AB}$ and $\overline{AC}$ respectively. If $\overline{DF},\overline{EF}$ (with $F \in \overline{AE}, G \in \overline{AD}$) are the interior angle bisectors of the angles of the triangle $ADE$, prove that the sum of the areas of the triangles $DEF$ and $DEG$ is at most equal with the area of the triangle $ABC$. When does the equality hold?
Izvor: Juniorska balkanska matematička olimpijada 2001.