Junior Balkan MO 2003 - Problem 3


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 4,0
Dodao/la: arhiva
27. listopada 2023.
LaTeX PDF

Let D, E, F be the midpoints of the arcs \overset{\frown}{BC}, \overset{\frown}{CA}, \overset{\frown}{AB} on the circumcircle of a triangle ABC not containing the points A, B, C, respectively. Let the line DE meets BC and CA at G and H, and let M be the midpoint of the segment \overline{GH}. Let the line FD meet BC and AB at K and J, and let N be the midpoint of the segment \overline{KJ}.

a) Find the angles of triangle DMN;

b) Prove that if P is the point of intersection of the lines AD and EF, then the circumcenter of triangle DMN lies on the circumcircle of triangle PMN.

Izvor: Juniorska balkanska matematička olimpijada 2003.