Školjka
Natjecanja
Shellfish
Tečajevi
MetaMath '24
Izbornik
Početna
Arhiva zadataka
Natjecanja
Olimpijade
Međunarodna matematička olimpijada
Međunarodna matematička olimpijada - Shortlist
Srednjoeuropska matematička olimpijada
JBMO
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
ELMO
Europski matematički kup
Skakavac
Mathejeva mala (m)učionica
MNM predavanja subotom
Simulacije
Kamp 2013
RADDAR
Predavanja
Natjecanja
Tečajevi
Registracija
Prijava
Svi zadaci
Rješenja
Traži
Pomoć
O nama
Junior Balkan MO 2004 - Problem 1
Kvaliteta:
Avg:
0,0
Težina:
Avg:
4,0
Dodao/la:
arhiva
27. listopada 2023.
2004
JBMO
alg
nejednakost
Prove that the inequality
holds for all real numbers
and
, not both equal to 0.
Prove that the inequality\[\frac{ x+y}{x^2-xy+y^2 } \leq \frac{ 2\sqrt 2 }{\sqrt{ x^2 +y^2 } }\]holds for all real numbers $x$ and $y$, not both equal to 0.
Izvor: Juniorska balkanska matematička olimpijada 2004.
Poslana rješenja
Slični zadaci