Junior Balkan MO 2005 - Problem 2


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 4,0
Dodao/la: arhiva
27. listopada 2023.
LaTeX PDF

Let ABC be an acute-angled triangle inscribed in a circle k. It is given that the tangent from A to the circle meets the line BC at point P. Let M be the midpoint of the line segment \overline{AP} and R be the second intersection point of the circle k with the line BM. The line PR meets again the circle k at point S different from R.

Prove that the lines AP and CS are parallel.

Izvor: Juniorska balkanska matematička olimpijada 2005.