Junior Balkan MO 2011 - Problem 4


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 4,0
Dodao/la: arhiva
27. listopada 2023.
LaTeX PDF

Let ABCD be a convex quadrilateral and points E and F on sides \overline{AB},\overline{CD} such that\tfrac{AB}{AE}=\tfrac{CD}{DF}=n \text. If S is the area of AEFD show that S\leq\frac{AB\cdot CD+n(n-1)AD^2+n^2DA\cdot BC}{2n^2}.

Izvor: Juniorska balkanska matematička olimpijada 2011.