Školjka
Natjecanja
Shellfish
Tečajevi
MetaMath '24
Izbornik
Početna
Arhiva zadataka
Natjecanja
Olimpijade
Međunarodna matematička olimpijada
Međunarodna matematička olimpijada - Shortlist
Srednjoeuropska matematička olimpijada
JBMO
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
ELMO
Europski matematički kup
Skakavac
Mathejeva mala (m)učionica
MNM predavanja subotom
Simulacije
Kamp 2013
RADDAR
Predavanja
Natjecanja
Tečajevi
Registracija
Prijava
Svi zadaci
Rješenja
Traži
Pomoć
O nama
Junior Balkan MO 2017 - Problem 2
Kvaliteta:
Avg:
0,0
Težina:
Avg:
4,0
Dodao/la:
arhiva
27. listopada 2023.
2017
JBMO
alg
nejednakost
Let
be positive integers such that
.Prove that
When does the equality hold?
Let $x,y,z$ be positive integers such that $x\neq y\neq z \neq x$ .Prove that \[(x+y+z)(xy+yz+zx-2)\geq 9xyz \text.\] When does the equality hold?
Izvor: Juniorska balkanska matematička olimpijada 2017.
Poslana rješenja
Slični zadaci