Junior Balkan MO 2017 - Problem 3


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 4,0
Dodao/la: arhiva
27. listopada 2023.
LaTeX PDF

Let ABC be an acute triangle such that |AB|\neq |AC|, with circumcircle \Gamma and circumcenter O. Let M be the midpoint of BC and D be a point on \Gamma such that AD \perp  BC. let T be a point such that BDCT is a parallelogram and Q a point on the same side of BC as A such that \angle{BQM}=\angle{BCA} and \angle{CQM}=\angle{CBA}. Let the line AO intersect \Gamma at E (E\neq A) and let the circumcircle of \triangle ETQ intersect \Gamma at point X\neq E. Prove that the point A,M and X are collinear.

Izvor: Juniorska balkanska matematička olimpijada 2017.