« Vrati se
(BUL 2) Find all functions f defined for all x that satisfy the condition xf(y) + yf(x) = (x + y)f(x)f(y), for all x and y. Prove that exactly two of them are continuous.

Slični zadaci

Dokažite da ne postoji funkcija f : \mathbb{R} \rightarrow \mathbb{R} koja zadovoljava ove uvjete:

(i) f(1 + f(x)) = 1 - x, za svaki x \in \mathbb{R},
(ii) f(f(x)) = x, za svaki x \in \mathbb{R}.
Funkcija f definirana je za svaki realni broj i za svako x i y vrijedi 
f(xy)=f(x)\cdot f(y)-f(x+y)+1,
pri čemu je f(1)=2. Odredite f(m) za svaki cijeli broj m.
Find all functions f from the reals to the reals such that

f\left(f(x)+y\right)=2x+f\left(f(y)-x\right)

for all real x,y.
Find all nondecreasing functions f: \mathbb{R}\rightarrow\mathbb{R} such that
(i) f(0) = 0, f(1) = 1;
(ii) f(a) + f(b) = f(a)f(b) + f(a + b - ab) for all real numbers a, b such that a < 1 < b.
We denote by \mathbb{R}^+ the set of all positive real numbers.

Find all functions f: \mathbb R^ + \rightarrow\mathbb R^ + which have the property: f\left(x\right)f\left(y\right) = 2f\left(x + yf\left(x\right)\right) for all positive real numbers x and y.
Consider those functions f: \mathbb{N} \mapsto \mathbb{N} which satisfy the condition
f(m + n) \geq f(m) + f(f(n)) - 1
for all m,n \in \mathbb{N}. Find all possible values of f(2007).

Author: unknown author, Bulgaria