« Vrati se
All faces of the tetrahedron ABCD are acute-angled. Take a point X in the interior of the segment AB, and similarly Y in BC, Z in CD and T in AD.

a.) If \angle DAB+\angle BCD\ne\angle CDA+\angle ABC, then prove none of the closed paths XYZTX has minimal length;

b.) If \angle DAB+\angle BCD=\angle CDA+\angle ABC, then there are infinitely many shortest paths XYZTX, each with length 2AC\sin k, where 2k=\angle BAC+\angle CAD+\angle DAB.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1177IMO Shortlist 1964 problem 51
1180IMO Shortlist 1965 problem 31
1308IMO Shortlist 1968 problem 30
1404IMO Shortlist 1970 problem 31
1435IMO Shortlist 1972 problem 50
1437IMO Shortlist 1972 problem 70