IMO Shortlist 1971 problem 7


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 0.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
All faces of the tetrahedron ABCD are acute-angled. Take a point X in the interior of the segment AB, and similarly Y in BC, Z in CD and T in AD.

a.) If \angle DAB+\angle BCD\ne\angle CDA+\angle ABC, then prove none of the closed paths XYZTX has minimal length;

b.) If \angle DAB+\angle BCD=\angle CDA+\angle ABC, then there are infinitely many shortest paths XYZTX, each with length 2AC\sin k, where 2k=\angle BAC+\angle CAD+\angle DAB.
Source: Međunarodna matematička olimpijada, shortlist 1971