IMO Shortlist 1972 problem 5


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 0.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
Prove the following assertion: The four altitudes of a tetrahedron ABCD intersect in a point if and only if
AB^2 + CD^2 = BC^2 + AD^2 = CA^2 + BD^2.
Source: Međunarodna matematička olimpijada, shortlist 1972