Državno natjecanje 2008 SŠ2 4


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 4,0
Dodao/la: arhiva
1. travnja 2012.
LaTeX PDF
Dan je četverokut ABCD s kutovima \alpha = {60}^{\circ}, \beta = {90}^{\circ}, \gamma = {120}^{\circ}. Dijagonale \overline{AC} i \overline{BD} sijeku se u točki S, pri čemu je 2\left\vert BS \right\vert = \left\vert SD \right\vert = 2d. Iz polovišta P dijagonale \overline{AC} spuštena je okomica \overline{PM} na dijagonalu \overline{BD}, a iz točke S okomica \overline{SN} na \overline{PB}.

Dokaži:

a) \displaystyle \left\vert MS \right\vert = \left\vert NS \right\vert = \frac{d}{2}

b) \left\vert AD \right\vert = \left\vert DC \right\vert

c) \displaystyle P\!\left(ABCD\right) = \frac{9d^2}{2}.
Izvor: Državno natjecanje iz matematike 2008