« Vrati se
Let a,b,c,d be four non-negative numbers satisfying a+b+c+d=1. Prove the inequality abc + bcd + cda + dab \leq \frac{1}{27} + \frac{176}{27}abcd

Slični zadaci

Let n be an integer,n \geq 3. Let x_1, x_2, \ldots, x_n be real numbers such that x_i < x_{i+1} for 1 \leq i \leq n - 1. Prove that

\frac{n(n-1)}{2}\sum_{i < j}x_{i}x_{j}>\left(\sum^{n-1}_{i=1}(n-i)\cdot x_{i}\right)\cdot\left(\sum^{n}_{j=2}(j-1)\cdot x_{j}\right)
Let {a_1,a_2,\dots,a_n} be positive real numbers, {n>1}. Denote by g_n their geometric mean, and by A_1,\,A_2,\,\dots,\,A_n the sequence of arithmetic means defined by
A_k=\frac{a_1+a_2+\cdots+a_k}{k},\qquad k=1,2,\dots,n.
Let G_n be the geometric mean of A_1,A_2,\dots,A_n. Prove the inequality n \root n\of{\frac{G_n}{A_n}}+ \frac{g_n}{G_n}\le n+1 and establish the cases of equality.
Determine the least real number M such that the inequality
\left|ab\left(a^{2}-b^{2}\right)+bc\left(b^{2}-c^{2}\right)+ca\left(c^{2}-a^{2}\right)\right| \leq M\left(a^{2}+b^{2}+c^{2}\right)^2
holds for all real numbers a, b and c.
Let a_1, a_2, \ldots, a_{100} be nonnegative real numbers such that a^2_1 + a^2_2 + \ldots + a^2_{100} = 1. Prove that
a^2_1 \cdot a_2 + a^2_2 \cdot a_3 + \ldots + a^2_{100} \cdot a_1 < \frac {12}{25}.
Author: Marcin Kuzma, Poland
Let a, b, c, d be positive real numbers such that abcd = 1 and a + b + c + d > \dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{d} + \dfrac{d}{a}. Prove that
a + b + c + d < \dfrac{b}{a} + \dfrac{c}{b} + \dfrac{d}{c} + \dfrac{a}{d}
Proposed by Pavel Novotný, Slovakia
Prove that for any four positive real numbers a, b, c, d the inequality
\frac {(a - b)(a - c)}{a + b + c} + \frac {(b - c)(b - d)}{b + c + d} + \frac {(c - d)(c - a)}{c + d + a} + \frac {(d - a)(d - b)}{d + a + b} \geqslant 0
holds. Determine all cases of equality.

Author: Darij Grinberg (Problem Proposal), Christian Reiher (Solution), Germany