IMO Shortlist 2006 problem A6


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 8.0
Determine the least real number M such that the inequality
\left|ab\left(a^{2}-b^{2}\right)+bc\left(b^{2}-c^{2}\right)+ca\left(c^{2}-a^{2}\right)\right| \leq M\left(a^{2}+b^{2}+c^{2}\right)^2
holds for all real numbers a, b and c.
Source: Međunarodna matematička olimpijada, shortlist 2006