« Vrati se
Let m and n be two positive integers. Let a_1, a_2, \ldots, a_m be m different numbers from the set \{1, 2,\ldots, n\} such that for any two indices i and j with 1\leq i \leq j \leq m and a_i + a_j \leq n, there exists an index k such that a_i + a_j = a_k. Show that
\frac {a_1 + a_2 + ... + a_m}{m} \geq \frac {n + 1}{2}.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1899IMO Shortlist 1995 problem A122
2038IMO Shortlist 2000 problem A131
2065IMO Shortlist 2001 problem A11
2171IMO Shortlist 2004 problem N29
2177IMO Shortlist 2005 problem A16
2234IMO Shortlist 2007 problem A112