« Vrati se
Suppose that x_1, x_2, x_3, \ldots are positive real numbers for which x^n_n = \sum^{n-1}_{j=0} x^j_n for n = 1, 2, 3, \ldots Prove that \forall n, 2 - \frac{1}{2^{n-1}} \leq x_n < 2 - \frac{1}{2^n}.

Slični zadaci

Find all of the positive real numbers like x,y,z, such that :

1.) x + y + z = a + b + c

2.) 4xyz = a^2x + b^2y + c^2z + abc

Proposed to Gazeta Matematica in the 80s by VASILE CÎRTOAJE and then by Titu Andreescu to IMO 1995.
Let k be a positive integer. Show that there are infinitely many perfect squares of the form n \cdot 2^k - 7 where n is a positive integer.
Find all x,y and z in positive integer: z + y^{2} + x^{3} = xyz and x = \gcd(y,z).
Consider two monotonically decreasing sequences \left( a_k\right) and \left( b_k\right), where k \geq 1, and a_k and b_k are positive real numbers for every k. Now, define the sequences

c_k = \min \left( a_k, b_k \right);
A_k = a_1 + a_2 + ... + a_k;
B_k = b_1 + b_2 + ... + b_k;
C_k = c_1 + c_2 + ... + c_k

for all natural numbers k.

(a) Do there exist two monotonically decreasing sequences \left( a_k\right) and \left( b_k\right) of positive real numbers such that the sequences \left( A_k\right) and \left( B_k\right) are not bounded, while the sequence \left( C_k\right) is bounded?

(b) Does the answer to problem (a) change if we stipulate that the sequence \left( b_k\right) must be \displaystyle b_k = \frac {1}{k} for all k ?
Za svaki prirodan broj n određeni su cijeli brojevi a_n i b_n tako da je
 (1+\sqrt{2})^{2n+1}=a_n+b_n \sqrt{2}.
a) Dokažite da su a_n i b_n neparni za svaki n.
b) Dokažite da je b_n hipotenuza pravokutnog trokuta čije su katete
 \frac{a_n+(-1)^n}{2}, \ \frac{a_n-(-1)^n}{2}.
Three strictly increasing sequences
a_1, a_2, a_3, \ldots,\qquad b_1, b_2, b_3, \ldots,\qquad c_1, c_2, c_3, \ldots
of positive integers are given. Every positive integer belongs to exactly one of the three sequences. For every positive integer n, the following conditions hold:
(a) c_{a_n}=b_n+1;
(b) a_{n+1}>b_n;
(c) the number c_{n+1}c_{n}-(n+1)c_{n+1}-nc_n is even.
Find a_{2010}, b_{2010} and c_{2010}.