« Vrati se
Let a_1 \geq a_2 \geq \ldots \geq a_n be real numbers such that for all integers k > 0,

a^k_1 + a^k_2 + \ldots + a^k_n \geq 0.

Let p = max\{|a_1|, \ldots, |a_n|\}. Prove that p = a_1 and that

(x - a_1) \cdot (x - a_2) \cdots (x - a_n) \leq x^n - a^n_1 for all x > a_1.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1927IMO Shortlist 1996 problem A114
1929IMO Shortlist 1996 problem A31
1930IMO Shortlist 1996 problem A41
2065IMO Shortlist 2001 problem A11
2171IMO Shortlist 2004 problem N29
2177IMO Shortlist 2005 problem A16