a) Služeći se poznatim formulama
i
u trokutu
s polumjerima
i
opisane i upisane kružnice i poluopsegom
i izražavajući
i
pomoću
pokažite da je broj
rješenje jednadžbe

b) Izrazite brojeve
i
pomoću duljina
,
i
.
c) Pokažite da je zbroj orijentiranih udaljenosti središta
opisane kružnice trokuta
od pravaca
,
,
jednaka
, ako se orijentirana udaljenost točke
od npr. pravca
uzima kao pozitivna ili negativna već prema tome da li su točke
i
s iste ili s različitih strana tog pravca.
d) Ako se konveksan tetivni
-terokut na bilo koji način podijeli na
trokuta pomoću
dijagonala, koje se ne sijeku unutar tog poligona, pokažite da je zbroj polumjera upisanih kružnica tih trokuta stalan bez obzira na podjelu na trokute.
(Napomena: Ovaj zadatak vrijedi
bodova (ostali po
), a pri rješavanju pojedinog dijela ovog zadatka dopušteno je koristiti ranije dijelove makar i ne bili riješeni.)











b) Izrazite brojeve





c) Pokažite da je zbroj orijentiranih udaljenosti središta










d) Ako se konveksan tetivni



(Napomena: Ovaj zadatak vrijedi

