« Vrati se
Let a_1,a_2,\ldots be an infinite sequence of real numbers, for which there exists a real number c with 0\leq a_i\leq c for all i, such that

\left|\,a_i-a_j\,\right|\geq{1\over i+j}{\rm \forall}i,j \quad \textnormal{with} \quad i\ne j.

Prove that c\geq1.

Slični zadaci

Consider two monotonically decreasing sequences \left( a_k\right) and \left( b_k\right), where k \geq 1, and a_k and b_k are positive real numbers for every k. Now, define the sequences

c_k = \min \left( a_k, b_k \right);
A_k = a_1 + a_2 + ... + a_k;
B_k = b_1 + b_2 + ... + b_k;
C_k = c_1 + c_2 + ... + c_k

for all natural numbers k.

(a) Do there exist two monotonically decreasing sequences \left( a_k\right) and \left( b_k\right) of positive real numbers such that the sequences \left( A_k\right) and \left( B_k\right) are not bounded, while the sequence \left( C_k\right) is bounded?

(b) Does the answer to problem (a) change if we stipulate that the sequence \left( b_k\right) must be \displaystyle b_k = \frac {1}{k} for all k ?
Let a_0, a_1, a_2, ... be an infinite sequence of real numbers satisfying the equation a_n=\left|a_{n+1}-a_{n+2}\right| for all n\geq 0, where a_0 and a_1 are two different positive reals.

Can this sequence a_0, a_1, a_2, ... be bounded?

Remark This one is from the IMO Shortlist 2004, but it's already published on the official BWM website und thus I take the freedom to post it here:
a_{0},\ a_{1},\ a_{2},\dots is a sequence of real numbers such that
a_{n + 1} = \left[a_{n}\right]\cdot \left\{a_{n}\right\}
prove that exist j such that for every i\geq j we have a_{i + 2} = a_{i}.
Let a_{0}, a_{1}, a_{2}, ... be a sequence of reals such that a_{0} = - 1 and

a_{n} + \frac {a_{n - 1}}{2} + \frac {a_{n - 2}}{3} + ... + \frac {a_{1}}{n} + \frac {a_{0}}{n + 1} = 0 for all n\geq 1.

Show that a_{n} > 0 for all n\geq 1.
Za svaki prirodan broj n određeni su cijeli brojevi a_n i b_n tako da je
 (1+\sqrt{2})^{2n+1}=a_n+b_n \sqrt{2}.
a) Dokažite da su a_n i b_n neparni za svaki n.
b) Dokažite da je b_n hipotenuza pravokutnog trokuta čije su katete
 \frac{a_n+(-1)^n}{2}, \ \frac{a_n-(-1)^n}{2}.
Neka je F_n=x^n \sin nA + y^n \sin nB + z^n \sin nC, gdje su x, y, z, A, B, C realni brojevi takvi da je A+B+C=\pi. Ako je F_1=F_2=0, dokažite da je F_n=0 za svaki prirodni broj n.