« Vrati se
The function f from the set \mathbb{N} of positive integers into itself is defined by the equality
\displaystyle f(n)=\sum_{k=1}^{n} \gcd(k,n),\qquad n\in \mathbb{N}
a) Prove that f(mn)=f(m)f(n) for every two relatively prime {m,n\in\mathbb{N}}.

b) Prove that for each a\in\mathbb{N} the equation f(x)=ax has a solution.

c) Find all a \in \mathbb{N} such that the equation f(x)=ax has a unique solution.

Slični zadaci

Let S be the set of all pairs (m,n) of relatively prime positive integers m,n with n even and m < n. For s = (m,n) \in S write n = 2^k \cdot n_o where k, n_0 are positive integers with n_0 odd and define f(s) = (n_0, m + n - n_0). Prove that f is a function from S to S and that for each s = (m,n) \in S, there exists a positive integer t \leq \frac{m+n+1}{4} such that f^t(s) = s, where f^t(s) = \underbrace{ (f \circ f \circ \cdots \circ f) }_{t \text{ times}}(s).

If m+n is a prime number which does not divide 2^k - 1 for k = 1,2, \ldots, m+n-2, prove that the smallest value t which satisfies the above conditions is \left [\frac{m+n+1}{4} \right ] where \left[ x \right] denotes the greatest integer \leq x.
Let a and b be non-negative integers such that ab \geq c^2, where c is an integer. Prove that there is a number n and integers x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n such that

\sum^n_{i=1} x^2_i = a, \sum^n_{i=1} y^2_i = b, \text{ and } \sum^n_{i=1} x_iy_i = c.
Let a_1 \geq a_2 \geq \ldots \geq a_n be real numbers such that for all integers k > 0,

a^k_1 + a^k_2 + \ldots + a^k_n \geq 0.

Let p = max\{|a_1|, \ldots, |a_n|\}. Prove that p = a_1 and that

(x - a_1) \cdot (x - a_2) \cdots (x - a_n) \leq x^n - a^n_1 for all x > a_1.
Let a, b, c be positive integers satisfying the conditions b > 2a and c > 2b. Show that there exists a real number \lambda with the property that all the three numbers \lambda a, \lambda b, \lambda c have their fractional parts lying in the interval \left(\frac {1}{3}, \frac {2}{3} \right].
Let T denote the set of all ordered triples \left(p,q,r\right) of nonnegative integers. Find all functions f: T \rightarrow \mathbb{R} satisfying
f(p,q,r) =
\begin{cases}
0 &\text{if}\; pqr = 0,\\
1+\frac{1}{6}(f(p+1,q-1,r)+f(p-1,q+1,r) &\\
+f(p-1,q,r+1)+f(p+1,q,r-1) &\\
+f(p,q+1,r-1)+f(p,q-1,r+1)) &\text{otherwise}\end{cases}
for all nonnegative integers p, q, r.
Find all functions f: \mathbb{N^{*}}\to \mathbb{N^{*}} satisfying
\left(f^{2}\left(m\right)+f\left(n\right)\right) \mid \left(m^{2}+n\right)^{2}
for any two positive integers m and n.

Remark. The abbreviation \mathbb{N^{*}} stands for the set of all positive integers:
\mathbb{N^{*}}=\left\{1,2,3,...\right\}.
By f^{2}\left(m\right), we mean \left(f\left(m\right)\right)^{2} (and not f\left(f\left(m\right)\right)).