IMO Shortlist 2000 problem A2


Kvaliteta:
  Avg: 0.0
Težina:
  Avg: 6.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
Let a, b, c be positive integers satisfying the conditions b > 2a and c > 2b. Show that there exists a real number \lambda with the property that all the three numbers \lambda a, \lambda b, \lambda c have their fractional parts lying in the interval \left(\frac {1}{3}, \frac {2}{3} \right].
Source: Međunarodna matematička olimpijada, shortlist 2000