« Vrati se
Find all pairs of integers a,b for which there exists a polynomial P(x) \in \mathbb{Z}[X] such that product (x^2+ax+b)\cdot P(x) is a polynomial of a form x^n+c_{n-1}x^{n-1}+...+c_1x+c_0 where each of c_0,c_1,...,c_{n-1} is equal to 1 or -1.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1900IMO Shortlist 1995 problem A22
1928IMO Shortlist 1996 problem A23
1986IMO Shortlist 1998 problem A40
2014IMO Shortlist 1999 problem A40
2039IMO Shortlist 2000 problem A21
2095IMO Shortlist 2002 problem A32