« Vrati se
Determine the least real number M such that the inequality
\left|ab\left(a^{2}-b^{2}\right)+bc\left(b^{2}-c^{2}\right)+ca\left(c^{2}-a^{2}\right)\right| \leq M\left(a^{2}+b^{2}+c^{2}\right)^2
holds for all real numbers a, b and c.

Slični zadaci

Let n be an integer,n \geq 3. Let x_1, x_2, \ldots, x_n be real numbers such that x_i < x_{i+1} for 1 \leq i \leq n - 1. Prove that

\frac{n(n-1)}{2}\sum_{i < j}x_{i}x_{j}>\left(\sum^{n-1}_{i=1}(n-i)\cdot x_{i}\right)\cdot\left(\sum^{n}_{j=2}(j-1)\cdot x_{j}\right)
Prove the inequality:

\displaystyle \sum_{i < j}{\frac {a_{i}a_{j}}{a_{i} + a_{j}}}\leq \frac {n}{2(a_{1} + a_{2} + ... + a_{n})}\cdot \sum_{i < j}{a_{i}a_{j}}

for positive reals a_{1}, a_{2}, ..., a_{n}.
Let a_1, a_2, \ldots, a_{100} be nonnegative real numbers such that a^2_1 + a^2_2 + \ldots + a^2_{100} = 1. Prove that
a^2_1 \cdot a_2 + a^2_2 \cdot a_3 + \ldots + a^2_{100} \cdot a_1 < \frac {12}{25}.
Author: Marcin Kuzma, Poland
Let a, b, c, d be positive real numbers such that abcd = 1 and a + b + c + d > \dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{d} + \dfrac{d}{a}. Prove that
a + b + c + d < \dfrac{b}{a} + \dfrac{c}{b} + \dfrac{d}{c} + \dfrac{a}{d}
Proposed by Pavel Novotný, Slovakia
Prove that for any four positive real numbers a, b, c, d the inequality
\frac {(a - b)(a - c)}{a + b + c} + \frac {(b - c)(b - d)}{b + c + d} + \frac {(c - d)(c - a)}{c + d + a} + \frac {(d - a)(d - b)}{d + a + b} \geqslant 0
holds. Determine all cases of equality.

Author: Darij Grinberg (Problem Proposal), Christian Reiher (Solution), Germany
Let a, b, c be positive real numbers such that ab+bc+ca \leqslant 3abc. Prove that
\sqrt{\frac{a^2+b^2}{a+b}}+\sqrt{\frac{b^2+c^2}{b+c}}+\sqrt{\frac{c^2+a^2}{c+a}}+3 \leqslant \sqrt{2}\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right) \text{.}

Proposed by Dzianis Pirshtuk, Belarus