« Vrati se
Point P lies on side AB of a convex quadrilateral ABCD. Let \omega be the incircle of triangle CPD, and let I be its incenter. Suppose that \omega is tangent to the incircles of triangles APD and BPC at points K and L, respectively. Let lines AC and BD meet at E, and let lines AK and BL meet at F. Prove that points E, I, and F are collinear.

Author: Waldemar Pompe, Poland

Slični zadaci

The incircle \Omega of the acute-angled triangle ABC is tangent to its side BC at a point K. Let AD be an altitude of triangle ABC, and let M be the midpoint of the segment AD. If N is the common point of the circle \Omega and the line KM (distinct from K), then prove that the incircle \Omega and the circumcircle of triangle BCN are tangent to each other at the point N.
For a given triangle ABC, let X be a variable point on the line BC such that C lies between B and X and the incircles of the triangles ABX and ACX intersect at two distinct points P and Q. Prove that the line PQ passes through a point independent of X.

comment
An extension by Darij Grinberg can be found here.
In a triangle ABC, let M_{a}, M_{b}, M_{c} be the midpoints of the sides BC, CA, AB, respectively, and T_{a}, T_{b}, T_{c} be the midpoints of the arcs BC, CA, AB of the circumcircle of ABC, not containing the vertices A, B, C, respectively. For i \in \left\{a, b, c\right\}, let w_{i} be the circle with M_{i}T_{i} as diameter. Let p_{i} be the common external common tangent to the circles w_{j} and w_{k} (for all \left\{i, j, k\right\}= \left\{a, b, c\right\}) such that w_{i} lies on the opposite side of p_{i} than w_{j} and w_{k} do.
Prove that the lines p_{a}, p_{b}, p_{c} form a triangle similar to ABC and find the ratio of similitude.
Let ABC be a fixed triangle, and let A_1, B_1, C_1 be the midpoints of sides BC, CA, AB, respectively. Let P be a variable point on the circumcircle. Let lines PA_1, PB_1, PC_1 meet the circumcircle again at A', B', C', respectively. Assume that the points A, B, C, A', B', C' are distinct, and lines AA', BB', CC' form a triangle. Prove that the area of this triangle does not depend on P.

Author: Christopher Bradley, United Kingdom
Determine the smallest positive real number k with the following property. Let ABCD be a convex quadrilateral, and let points A_1, B_1, C_1, and D_1 lie on sides AB, BC, CD, and DA, respectively. Consider the areas of triangles AA_1D_1, BB_1A_1, CC_1B_1 and DD_1C_1; let S be the sum of the two smallest ones, and let S_1 be the area of quadrilateral A_1B_1C_1D_1. Then we always have kS_1\ge S.

Author: unknown author, USA
Given an acute triangle ABC with \angle B > \angle C. Point I is the incenter, and R the circumradius. Point D is the foot of the altitude from vertex A. Point K lies on line AD such that AK = 2R, and D separates A and K. Lines DI and KI meet sides AC and BC at E,F respectively. Let IE = IF.

Prove that \angle B\leq 3\angle C.

Author: Davoud Vakili, Iran