« Vrati se
Niz \{ a_n \} je zadan na ovaj način:
 a_0=0, \ a_1=1, \ a_n=2a_{n-1}+a_{n-2}, \ n>1.
Dokažite da 2^k dijeli a_n ako i samo ako 2^k dijeli n.

Slični zadaci

Determine all pairs (a,b) of real numbers such that a \lfloor bn \rfloor =b \lfloor an \rfloor for all positive integers n. (Note that \lfloor x\rfloor denotes the greatest integer less than or equal to x.)
Determine the smallest integer n\geq 4 for which one can choose four different numbers a,b,c and d from any n distinct integers such that a+b-c-d is divisible by 20.
A sequence of integers a_{1},a_{2},a_{3},\ldots is defined as follows: a_{1} = 1 and for n\geq 1, a_{n + 1} is the smallest integer greater than a_{n} such that a_{i} + a_{j}\neq 3a_{k} for any i,j and k in \{1,2,3,\ldots ,n + 1\}, not necessarily distinct. Determine a_{1998}.
Let m be a fixed integer greater than 1. The sequence x_0, x_1, x_2, \ldots is defined as follows:

x_i=  2^i if 0 \leq i\leq m-1 and x_i = \sum_{j=1}^{m}x_{i-j}, if i\geq m.

Find the greatest k for which the sequence contains k consecutive terms divisible by m.
Find all positive integers n such that there exists a sequence of positive integers a_1, a_2, ..., a_n satisfying
a_{k+1}=\frac{a_k^2+1}{a_{k-1}+1}-1 for every k with 2 \leqslant k \leqslant n-1.

Proposed by North Korea
Neka je skup prirodnih brojeva podijeljen u intervale na sljedeći način:
U prvom intervalu je broj 1, u drugom brojevi 2 i 3, u trećem 4, 5 i 6 i u svakom idućem jedan broj više nego u prethodnom (brojevi u intervalima su uzastopni).
Neka je p_i udio prostih brojeva u i-tom intervalu.

a) Dokaži ili opovrgni: Postoji beskonačno brojeva k za koje je  p_{k+1} < p_k.

b) Dokaži ili opovrgni: Postoji beskonačno brojeva k za koje je  p_{k+1} > p_k.