MEMO 2007 pojedinačno problem 3


Kvaliteta:
  Avg: 3,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
28. travnja 2012.
LaTeX PDF
Let k be a circle and k_{1},k_{2},k_{3},k_{4} four smaller circles with their centres O_{1},O_{2},O_{3},O_{4} respectively, on k. For i = 1,2,3,4 and k_5=k_1 the circles k_i and k_{i+1} meet at A_i and B_i such that A_i lies on k. The points O_{1},A_{1},O_{2},A_{2},O_{3},A_{3},O_{4},A_{4} lie in that order on k and are pairwise different.

Prove that B_{1}B_{2}B_{3}B_{4} is a rectangle.
Izvor: Srednjoeuropska matematička olimpijada 2007, pojedinačno natjecanje, problem 3