MEMO 2008 pojedinačno problem 1


Kvaliteta:
  Avg: 3,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
28. travnja 2012.
LaTeX PDF
Let (a_n)^{\infty}_{n=1} be a sequence of integers with a_{n} < a_{n+1}, \quad \forall n \geq 1. For all quadruple (i,j,k,l) of indices such that 1 \leq i < j \leq k < l and i + l = j + k we have the inequality a_{i} + a_{l} > a_{j} + a_{k}. Determine the least possible value of a_{2008}.
Izvor: Srednjoeuropska matematička olimpijada 2008, pojedinačno natjecanje, problem 1