MEMO 2008 pojedinačno problem 3


Kvaliteta:
  Avg: 3,0
Težina:
  Avg: 5,0
Dodao/la: arhiva
28. travnja 2012.
LaTeX PDF
Let ABC be an isosceles triangle with AC = BC. Its incircle touches AB in D and BC in E. A line distinct of AE goes through A and intersects the incircle in F and G. Line AB intersects line EF and EG in K and L, respectively. Prove that DK = DL.
Izvor: Srednjoeuropska matematička olimpijada 2008, pojedinačno natjecanje, problem 3