MEMO 2009 pojedinačno problem 1


Kvaliteta:
  Avg: 3,7
Težina:
  Avg: 6,0
Dodao/la: arhiva
28. travnja 2012.
LaTeX PDF
Find all functions f: \mathbb{R} \to \mathbb{R}, such that f(xf(y)) + f(f(x) + f(y)) = yf(x) + f(x + f(y)) holds for all x, y \in \mathbb{R}, where \mathbb{R} denotes the set of real numbers.
Izvor: Srednjoeuropska matematička olimpijada 2009, pojedinačno natjecanje, problem 1