MEMO 2009 pojedinačno problem 4
Dodao/la:
arhiva28. travnja 2012. Determine all integers

such that for all pairs

of different positive integers not greater than

, the number

is not divisible by

.
%V0
Determine all integers $k\ge 2$ such that for all pairs $(m,\,n)$ of different positive integers not greater than $k$, the number $n^{n-1}-m^{m-1}$ is not divisible by $k$.
Izvor: Srednjoeuropska matematička olimpijada 2009, pojedinačno natjecanje, problem 4