MEMO 2009 ekipno problem 2


Kvaliteta:
  Avg: 2,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
28. travnja 2012.
LaTeX PDF
Let a, b, c be real numbers such that for every two of the equations x^2+ax+b=0, \quad x^2+bx+c=0, \quad x^2+cx+a=0 there is exactly one real number satisfying both of them. Determine all possible values of a^2+b^2+c^2.
Izvor: Srednjoeuropska matematička olimpijada 2009, ekipno natjecanje, problem 2