MEMO 2010 pojedinačno problem 3


Kvaliteta:
  Avg: 3,0
Težina:
  Avg: 5,3
Dodao/la: arhiva
28. travnja 2012.
LaTeX PDF
We are given a cyclic quadrilateral ABCD with a point E on the diagonal AC such that AD=AE and CB=CE. Let M be the center of the circumcircle k of the triangle BDE. The circle k intersects the line AC in the points E and F. Prove that the lines FM, AD and BC meet at one point.
Izvor: Srednjoeuropska matematička olimpijada 2010, pojedinačno natjecanje, problem 3