MEMO 2010 ekipno problem 2


Kvaliteta:
  Avg: 3,5
Težina:
  Avg: 6,0
Dodao/la: arhiva
28. travnja 2012.
LaTeX PDF
For each integer n\geqslant2, determine the largest real constant C_n such that for all positive real numbers a_1, \ldots, a_n we have \frac{a_1^2+\ldots+a_n^2}{n}\geqslant\left(\frac{a_1+\ldots+a_n}{n}\right)^2+C_n\cdot(a_1-a_n)^2\mbox{.}
Izvor: Srednjoeuropska matematička olimpijada 2010, ekipno natjecanje, problem 2