MEMO 2011 ekipno problem 1
Dodao/la:
arhiva28. travnja 2012. Find all functions

such that the equality

holds for all

, where

is the set of real numbers.
%V0
Find all functions $f \colon \mathbb R \to \mathbb R$ such that the equality $$y^2f(x) + x^2f(y) + xy = xyf(x + y) + x^2 + y^2$$ holds for all $x, y \in \Bbb R$, where $\Bbb R$ is the set of real numbers.
Izvor: Srednjoeuropska matematička olimpijada 2011, ekipno natjecanje, problem 1