MEMO 2012 pojedinačno problem 1
Dodao/la:
arhiva23. lipnja 2013. Let

denote the set of all positive real numbers. Find all functions

such that

holds for all

.
%V0
Let $\mathbb{R} ^{+}$ denote the set of all positive real numbers. Find all functions $\mathbb{R} ^{+} \to \mathbb{R} ^{+}$ such that
$$f(x+f(y)) = yf(xy+1)$$
holds for all $x, y \in \mathbb{R} ^{+}$.
Izvor: Srednjoeuropska matematička olimpijada 2012, pojedinačno natjecanje, problem 1