MEMO 2012 ekipno problem 5


Kvaliteta:
  Avg: 1,5
Težina:
  Avg: 4,7
Dodao/la: arhiva
23. lipnja 2013.
LaTeX PDF
Let K be the midpoint of the side AB of a given triangle ABC. Let L and M be points on the sides AC and BC, respectively, such that \angle CLK = \angle KMC. Prove that the perpendiculars to the sides AB, AC, and BC passing through K,L, and M, respectively, are concurrent.
Izvor: Srednjoeuropska matematička olimpijada 2012, ekipno natjecanje, problem 5