MEMO 2014 pojedinačno problem 3


Kvaliteta:
  Avg: 2,5
Težina:
  Avg: 4,7
Dodao/la: arhiva
24. rujna 2014.
LaTeX PDF
Let ABC be a triangle with AB < AC and incentre I. Let E be the point on the side AC such that AE = AB. Let G be the point on the line EI such that \angle IBG = \angle CBA and such that E and G lie on opposite sides of I.
Prove that the line AI, the perpendicular to AE at E, and the bisector of the angle \angle BGI are concurrent.
Izvor: Srednjoeuropska matematička olimpijada 2014, pojedinačno natjecanje, problem 3