Županijsko natjecanje 1994 SŠ1 1


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 3,0
Dodao/la: arhiva
1. travnja 2012.
LaTeX PDF
Nad hipotenuzom \overline{AB} i katetama \overline{BC}, \overline{CA} pravokutnog trokuta ABC konstruirani su s vanjske strane kvadrati ABDE, BCFG, CAHK. Neka je L sjecište pravaca FG i HK i neka su M, N, P točke simetrične točkama G, H, L s obzirom na pravac AB. Dokažite da točke D, E, C leže na pravcima MP, NP, LP i da su trokuti ABC, CLK, LCF, AEN, EDP, DBM sukladni. Iscrtkajte te trokute! U kojem su odnosu peterokuti ABGLH i ABMPN? Što zaključujete promatranjem neiscrtkanih dijelova tih peterokuta?
Izvor: Županijsko natjecanje iz matematike 1994