MEMO 2015 pojedinačno problem 3


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
28. kolovoza 2018.
LaTeX PDF

Let ABCD be a cyclic quadrilateral. Let E be the intersection of lines parallel to AC and BD passing through points B and A, respectively. The lines EC and ED intersect the circumcircle of AEB again at F and G, respectively. Prove that points C, D, F, and G lie on a circle.

Izvor: Srednjoeuropska matematička olimpijada 2015, pojedinačno natjecanje, problem 3