MEMO 2015 ekipno problem 1


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
28. kolovoza 2018.
LaTeX PDF

Prove that for all positive real numbers a, b, c such that abc = 1 the following inequality holds: \frac{a}{2b + c^2} + \frac{b}{2c + a^2} + \frac{c}{2a + b^2} \leqslant \frac{a^2 + b^2 +c^2}{3}

Izvor: Srednjoeuropska matematička olimpijada 2015, ekipno natjecanje, problem 1