MEMO 2016 pojedinačno problem 2


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
29. kolovoza 2018.
LaTeX PDF

There are n \geqslant 3 positive integers written on a blackboard. A move consists of choosing three numbers a, b, c on the blackboard such that they are the sides of a non-degenerate non-equilateral triangle and replacing them by a + b - c, b + c - a and c + a - b.

Show that an infinite sequence of moves cannot exist.

Izvor: Srednjoeuropska matematička olimpijada 2016, pojedinačno natjecanje, problem 2