MEMO 2016 pojedinačno problem 3


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
29. kolovoza 2018.
LaTeX PDF

Let ABC be an acute-angled triangle with |\angle{BAC}| > 45^{\circ} and with circumcentre O. The point P lies in its interior such that the points A, P, O, B lie on a circle and BP is perpendicular to CP. The point Q lies on the segment BP such that AQ is parallel to PO.

Prove that |\angle{QCB}| = |\angle{PCO}|.

Izvor: Srednjoeuropska matematička olimpijada 2016, pojedinačno natjecanje, problem 3