MEMO 2018 pojedinačno problem 4


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Dodao/la: arhiva
8. rujna 2018.
LaTeX PDF

a) Prove that for very positive integer m there exists an integer n \geq m such that \bigg\lfloor\frac{n}{1}\bigg\rfloor\cdot\bigg\lfloor\frac{n}{2}\bigg\rfloor\cdot\ldots\cdot\bigg\lfloor\frac{n}{m}\bigg\rfloor = \binom{n}{m}

b) Denote by p(m) the smallest integer n \geq m such that the above equation holds. Prove p(2018) = p(2019).

Izvor: Srednjoeuropska matematička olimpijada 2016, pojedinačno natjecanje, problem 4